304 research outputs found

    The MMT API: A Generic MKM System

    Full text link
    The MMT language has been developed as a scalable representation and interchange language for formal mathematical knowledge. It permits natural representations of the syntax and semantics of virtually all declarative languages while making MMT-based MKM services easy to implement. It is foundationally unconstrained and can be instantiated with specific formal languages. The MMT API implements the MMT language along with multiple backends for persistent storage and frontends for machine and user access. Moreover, it implements a wide variety of MMT-based knowledge management services. The API and all services are generic and can be applied to any language represented in MMT. A plugin interface permits injecting syntactic and semantic idiosyncrasies of individual formal languages.Comment: Conferences on Intelligent Computer Mathematics (CICM) 2013 The final publication is available at http://link.springer.com

    Towards an Interaction-based Integration of MKM Services into End-User Applications

    Full text link
    The Semantic Alliance (SAlly) Framework, first presented at MKM 2012, allows integration of Mathematical Knowledge Management services into typical applications and end-user workflows. From an architecture allowing invasion of spreadsheet programs, it grew into a middle-ware connecting spreadsheet, CAD, text and image processing environments with MKM services. The architecture presented in the original paper proved to be quite resilient as it is still used today with only minor changes. This paper explores extensibility challenges we have encountered in the process of developing new services and maintaining the plugins invading end-user applications. After an analysis of the underlying problems, I present an augmented version of the SAlly architecture that addresses these issues and opens new opportunities for document type agnostic MKM services.Comment: 14 pages, 7 figure

    Search Interfaces for Mathematicians

    Full text link
    Access to mathematical knowledge has changed dramatically in recent years, therefore changing mathematical search practices. Our aim with this study is to scrutinize professional mathematicians' search behavior. With this understanding we want to be able to reason why mathematicians use which tool for what search problem in what phase of the search process. To gain these insights we conducted 24 repertory grid interviews with mathematically inclined people (ranging from senior professional mathematicians to non-mathematicians). From the interview data we elicited patterns for the user group "mathematicians" that can be applied when understanding design issues or creating new designs for mathematical search interfaces.Comment: conference article "CICM'14: International Conference on Computer Mathematics 2014", DML-Track: Digital Math Libraries 17 page

    Interoperability in the OpenDreamKit Project: The Math-in-the-Middle Approach

    Full text link
    OpenDreamKit --- "Open Digital Research Environment Toolkit for the Advancement of Mathematics" --- is an H2020 EU Research Infrastructure project that aims at supporting, over the period 2015--2019, the ecosystem of open-source mathematical software systems. From that, OpenDreamKit will deliver a flexible toolkit enabling research groups to set up Virtual Research Environments, customised to meet the varied needs of research projects in pure mathematics and applications. An important step in the OpenDreamKit endeavor is to foster the interoperability between a variety of systems, ranging from computer algebra systems over mathematical databases to front-ends. This is the mission of the integration work package (WP6). We report on experiments and future plans with the \emph{Math-in-the-Middle} approach. This information architecture consists in a central mathematical ontology that documents the domain and fixes a joint vocabulary, combined with specifications of the functionalities of the various systems. Interaction between systems can then be enriched by pivoting off this information architecture.Comment: 15 pages, 7 figure

    Realms: A Structure for Consolidating Knowledge about Mathematical Theories

    Full text link
    Since there are different ways of axiomatizing and developing a mathematical theory, knowledge about a such a theory may reside in many places and in many forms within a library of formalized mathematics. We introduce the notion of a realm as a structure for consolidating knowledge about a mathematical theory. A realm contains several axiomatizations of a theory that are separately developed. Views interconnect these developments and establish that the axiomatizations are equivalent in the sense of being mutually interpretable. A realm also contains an external interface that is convenient for users of the library who want to apply the concepts and facts of the theory without delving into the details of how the concepts and facts were developed. We illustrate the utility of realms through a series of examples. We also give an outline of the mechanisms that are needed to create and maintain realms.Comment: As accepted for CICM 201

    Which one is better: presentation-based or content-based math search?

    Full text link
    Mathematical content is a valuable information source and retrieving this content has become an important issue. This paper compares two searching strategies for math expressions: presentation-based and content-based approaches. Presentation-based search uses state-of-the-art math search system while content-based search uses semantic enrichment of math expressions to convert math expressions into their content forms and searching is done using these content-based expressions. By considering the meaning of math expressions, the quality of search system is improved over presentation-based systems

    A Universal Machine for Biform Theory Graphs

    Full text link
    Broadly speaking, there are two kinds of semantics-aware assistant systems for mathematics: proof assistants express the semantic in logic and emphasize deduction, and computer algebra systems express the semantics in programming languages and emphasize computation. Combining the complementary strengths of both approaches while mending their complementary weaknesses has been an important goal of the mechanized mathematics community for some time. We pick up on the idea of biform theories and interpret it in the MMTt/OMDoc framework which introduced the foundations-as-theories approach, and can thus represent both logics and programming languages as theories. This yields a formal, modular framework of biform theory graphs which mixes specifications and implementations sharing the module system and typing information. We present automated knowledge management work flows that interface to existing specification/programming tools and enable an OpenMath Machine, that operationalizes biform theories, evaluating expressions by exhaustively applying the implementations of the respective operators. We evaluate the new biform framework by adding implementations to the OpenMath standard content dictionaries.Comment: Conferences on Intelligent Computer Mathematics, CICM 2013 The final publication is available at http://link.springer.com

    OntoMathPROOntoMath^{PRO} Ontology: A Linked Data Hub for Mathematics

    Full text link
    In this paper, we present an ontology of mathematical knowledge concepts that covers a wide range of the fields of mathematics and introduces a balanced representation between comprehensive and sensible models. We demonstrate the applications of this representation in information extraction, semantic search, and education. We argue that the ontology can be a core of future integration of math-aware data sets in the Web of Data and, therefore, provide mappings onto relevant datasets, such as DBpedia and ScienceWISE.Comment: 15 pages, 6 images, 1 table, Knowledge Engineering and the Semantic Web - 5th International Conferenc

    A Vernacular for Coherent Logic

    Full text link
    We propose a simple, yet expressive proof representation from which proofs for different proof assistants can easily be generated. The representation uses only a few inference rules and is based on a frag- ment of first-order logic called coherent logic. Coherent logic has been recognized by a number of researchers as a suitable logic for many ev- eryday mathematical developments. The proposed proof representation is accompanied by a corresponding XML format and by a suite of XSL transformations for generating formal proofs for Isabelle/Isar and Coq, as well as proofs expressed in a natural language form (formatted in LATEX or in HTML). Also, our automated theorem prover for coherent logic exports proofs in the proposed XML format. All tools are publicly available, along with a set of sample theorems.Comment: CICM 2014 - Conferences on Intelligent Computer Mathematics (2014
    • …
    corecore